Check-Irregular LDPC Codes for Unequal Error Protection Under Iterative Decoding

Lucile SASSATELLI^{1,2}, Werner HENKEL¹, David DECLERCQ²

International University Bremen

¹International University Bremen, Campus Ring 1 28759 Bremen, Germany ²ETIS ENSEA/UCP/CNRS UMR-8051, 95014 Cergy-Pontoise, France

Introduction

Context

♦ Unequal Error Protection (UEP): useful in the transmission of multi-media content that have heterogeneous sensibility to errors.

♦ LDPC codes irregularity adaptable to UEP.

Goal

Creating flexible UEP coding scheme based on LDPC codes to process different kind of scalable data by the same system.

Approach

♦ Adapting the check node profile of bit-regular LDPC codes to speed up the convergence of the most protected bits.

♦ Flexible method consists in pruning a mother code to create several UEP subcodes decoded with the mother decoder.

Detailed Representation of Irregular LDPC Codes and Density Evolution

Detailed Representation

- ♦ To distinguish subclasses of interleavers inside one conventionnal code family [1].
- \diamond The function $\pi(b, d)$ describes the connections between the degrees b of bit nodes and the degrees dof check nodes. We can then define:

 $\lambda(b,d) = \frac{\pi(b,d)}{\sum_B \pi(b,d)} \qquad , \qquad \rho(b,d) = \frac{\pi(b,d)}{\sum_D \pi(b,d)} .$

 $\rho(b, d)$: fraction of edges connecting nodes of degree b and d among all edges of degree b.

Detailed Density Evolution with a Gaussian Approximation

 $\diamond x_{cv}^{(l)}(d)$ and $x_{vc}^{(l)}(b)$: mutual information between the input of the channel and the messages from check (bit) nodes of degree d(b) to any bit (check) node at the *l*th iteration.

$$\begin{aligned} x_{cv}^{(l)}(d) &= 1 - J\left((d-1)J^{-1} \left(1 - \sum_{b \in B} \lambda(b,d) x_{vc}^{(l)}(b) \right) \right) \\ x_{vc}^{(l)}(b) &= J\left(s + (b-1)J^{-1} \left(\sum_{d \in D} \rho(b,d) x_{cv}^{(l-1)}(d) \right) \right) \end{aligned}$$

with $J(m) = 1 - \mathbb{E}_x(\log_2(1 + e^{-x})), \quad x \sim N(m, 2m).$

Classes of Protection

 \diamond Class of sensitivity Ck, defined by the source encoder, made of equal priority bits.

 $\diamond x_{cv}^{(l)^{(C_k)}}$: average mutual information of messages coming out of the check nodes connected to C_k :

$$x_{cv}^{(l)^{(C_k)}} = \sum_{b \in C_k} \lambda_b^{(C_k)} \sum_{d \in C_k} \rho^{(C_k)}(b, d) x_{cv}^{(l)}(d)$$

with
$$\rho^{(C_k)}(b,d) = \frac{\pi(b,d)}{\sum_{d \in C_k} \pi(b,d)}$$

Cost Function

♦ Our UEP criterion is the local speed of convergence, represented by the difference between the mutual information of messages of the class C_k and the average mutual information over the whole graph. This difference can be lower bounded:

A Practical Means to Achieve UEP: Pruning a Mother Code

♦ Given the proportions of classes of protection:

Columns to be pruned = argmin $\overline{\rho}^{(C_k)}$

$$1 - J\left(\left(\sum_{d \in C_k} \rho^{(C_k)}(d) d - 1 \right) J^{-1}(1 - x_{vc}^{(l)}) \right) - x_{cv}^{(l-1)}$$
$$\leq x_{cv}^{(l)^{(C_k)}} - x_{cv}^{(l-1)}$$

 \diamond The lower bound depends on the average check connection degree of the class C_k :

$$\overline{
ho}^{(C_k)} = \sum_{d=d_{min}^{(C_k)}}^{d_{max}^{(C_k)}}
ho^{(C_k)}(d) d$$

To maximize this difference, we have to minimize $\overline{\rho}^{(C_k)}$. The most protected classes will have the lowest average check degrees.

♦ We must care about the trade-off between UEP brought by breaking the concentration of the check node profile and the increase of the gap to the capacity of the overall code [2].

 Pruning the LDPC mother code: the pruned bits of the codeword are known by the
 decoder.

 \rightarrow These bits disappear from the Tanner graph of the mother code, thereby reducing some check nodes degrees, and yield the UEP subcode.

 \diamond The preprocessing matrix **P** fixes to zero $K_0 - K_1$ bits of the mother code to construct a subcode of dimension K_1 , length $N_1 = N_0 - (K_0 - K_1)$ and rate $R = \frac{K_1}{N_0 - (K_0 - K_1)}$.

Several UEP configurations are reached from the same mother code by changing the preprocess.

Conclusion

♦ We have optimized the check-irregularity of a bit-regular LDPC code to speed up the local convergence of messages, thereby creating UEP behavior.

♦ We implemented the cost function by a highly flexible pruning method, that allows to have different UEP configurations with a same mother code.

♦ The next step of this work would be to combine bit and check irregularities to provide best unequal error protection.

References

[1] K. Kasai, T. Shibuya, and K. Sakaniwa. Detailedly Represented Irregular Low-Density Parity-Check Codes. IEICE Trans. Fundamentals, E86-A(10):2435–2443, October 2003.

[2] S.Y. Chung, T. Richardson, and R. Urbanke. Analysis of Sum-Product Decoding Low-Density Parity-Check Codes using a Gaussian Approximation. IEEE Trans. on Inform. Theory, 47(2):657–670, February 2001.

4th International Symposium on Turbo Codes & Related Topics