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Chapter 1

Introduction

RS codes can be defined using a DFT matrix which is known to diagonolize a
Toeplitz matrix. This property is commonly used in multi-carrier modulation,
since the channel realises a convolution which can be represented by a Toeplitz
matrix. A more general diagonolization for parallel decomposition of a channel
is provided by SVD. The question is now, if there is another way to obtain a
discrete code construction other than SVD what would be the properties of such
a code, especially if it guarantees a certain minimum Hamming distance? In
order to check for another option , the so-called Smith Normal Form (Invariant
Factor Theorem) is considered. Similar to Singular Value Decomposition, the
Smith Normal Form is used to decompose a matrix into two unimodular matrices
and a diagonal matrix. However, such type of diagonolization is different from
the one provided by the Singular Value Decomposition. Elementary row and
column operations are used to diagonolize a matrix. The aim of this project
is to study the properties of the unimodular matrices, and the possibility of a
code construction using the Smith Normal Form.

This report is structured as follow. Chapter 2 contains a brief introduction
to some topics related to the project. In Chapter 3 the Smith Normal Form is
described in detail along with some examples of integer matrix diagonolization.
The results of the project are finally summed up as conclusions at the end of
this report.
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Chapter 2

Diagonolization in coding
and transmission systems

This chapter will provide an overview of basic coding definitions and the distance
measure called metrics. RS codes can be defined using a DFT matrix which is
known to diagonolize a Toeplitz matrix. This property is commonly used in
multi-carrier modulation, since the channel realises a convolution which can be
represented by a Toeplitz matrix. The channel for multi-carrier (OFDM) sys-
tems with circular convolution is diagonolized with discrete Fourier transform.
In similar way, a more generalised diagonolization for parallel decomposition of
Multiple Input Multiple Output (MIMO) channel is provided by singular value
decomposition, resulting in pre and post processing unitary matrices. A similar
decomposition of matrix can also be obtained with the so-called Smith Normal
Form.

2.1 Transmission system model

Source encoder Channel encoder Modulator

Destination Source decoder Channel decoder

Channel

Demodulator

Information

source

u

noise

v

ru’

Block diagram of Transmission System Model

As shown in the figure [8], the information source may either be a person or
a machine. The Source encoder transforms the source output into binary dig-
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its called the information sequence u. TheChannel encoder transforms the in-
formation sequence u into a discrete encoded sequence v called a code-word.
The modulator transforms each output symbols of the channel encoder into a
waveform suitable for transmission. This waveform enters the channel and is
corrupted by noise. The channel may either be wireless or wire-line.
The demodulator processes each received waveform and results in either a dis-
crete or a continuous valued output. The sequence of demodulator outputs
corresponding to sequence v is called the received sequence r. The channel de-
coder transforms the received sequence r into a binary sequence u’ called the
estimated information sequence. The source decoder transforms the estimated
information sequence u’ into an estimate of the source output and delivers this
estimate to the destination.

2.2 Metrics

In mathematics, metric is a function which defines a distance between elements
of a set. The same term has been applied to the coding theory in a similar way.
Different distance functions are used in coding theory:

• Euclidean distance,

• Hamming distance.

The Euclidean distance dE [7] between two vectors a and b of length n with
components ai, bi is given by

d2
E =

n=1∑

i=0

(ai − bi)2 (2.1)

The Hamming distance dH [7] between two vectors a and b of length n with
components ai and bi that may be elements of an arbitrary number field, are
given as the number of different components,

dH = |M | of the set M = {j|aj 6= bj} . (2.2)

Definition:Hamming weight . The Hamming weight wH of a vector is the number
of non-zero components [7], i.e.,

wH = |M | with M ={j |aj 6= 0} . (2.3)

2.3 Discrete Fourier Transform

Let x[n], 0 ≤ n ≤ N − 1, denotes a discrete time sequence. The N -point DFT
of x[n] is defined as [10]

DFT{x[n]} = X[i] =
1√
N

N−1∑
n=0

x[n]e−j 2πni
N , 0 ≤ i ≤ N − 1 . (2.4)
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The sequence x[n] can be recovered from its DFT using the IDFT:

IDFT{X[i]} = x[n] =
1√
N

N−1∑

i=0

X[i]ej 2πni
N , 0 ≤ n ≤ N − 1 . (2.5)

For convenience (matrix representation) the formula’s derived for DFT and
IDFT can also be written as

X[i] =
N−1∑
n=0

x[n]W in , where i = 0, 1, . . . . . . , N − 1 . (2.6)

x[n] =
1
N

N−1∑
n=0

X[i]W−in , where n = 0, 1, . . . . . . , N − 1 . (2.7)

where by definition
W = e

−j2π
N

The DFT is widely used in digital signal processing and related fields to analyse
the frequency contents in a sampled signal, to solve partial differential equa-
tion and to perform other operations such as fast convolution . The matrix
representation (Vandermonde) of DFT is given by

W = 1/
√

N




1 1 1 1 1
1 W W 2 . . . WN−1

1 W 2 W 4 . . . W 2(N−1)

...
. . . . . . . . . . . .

1 WN−1 . . . . . . W (N−1)(N−1)




(2.8)

W is a symmetric matrix.

2.4 Orthogonal Frequency Division Multiplex-
ing (OFDM) and Diagonolization of a Toeplitz
matrix.

Orthogonal Frequency Division Multiplexing (OFDM) decomposes the wide-
band channel into a set of narrow band orthogonal sub-channels with a different
QAM symbol sent over each sub channel. Let X[N ] = (X[0], X[1], . . . , X[N−1])
be the input data stream. After IFFT and cyclic prefix addition, the input data
is x̃[n]=x̃[−µ], . . . , x̃[N −1] =(x[N −µ], . . . , x[0], . . . , x[N −1]). This input data
is filtered by the channel impulse response h(n) and corrupted by additive noise
n, so that the received signal is y(t) = x̃(n) ∗ h(n) + n. Denote the nth element
of these sequences as hn = h[n], x̃n = x̃[n], and yn = y[n]. The channel output
can be written as

y = Hx + n . (2.9)
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The received symbols y−1, . . . , y−µ are affected by ISI from the prior data block
and are discarded. The last µ symbols of x[n] correspond to the cyclic prefix.
From this, the received symbols in matrix form can equivalently be written as
[10]




yN−1

yN−2

...

...

...
y0




=




h0 h1 . . . hµ 0 . . . 0
0 h0 h1 . . . hµ−1 . . . 0
...

...
. . . . . .

...
0 . . . 0 h0 h1 . . . hµ

...
...

. . . . . .
...

h2 h3 . . . hµ−2 . . . h0 h1

h1 h2 . . . hµ−1 . . . 0 h0







xN−1

xN−2

...

...
x0




+




nN−1

nN−2

...

...
n0




.

(2.10)
we abbreviate

y = H̃x + n , (2.11)

where H̃ is N ×N circulant convolution channel matrix over the N samples.
This channel matrix H̃ has the eigenvalue decomposition

H̃ = MΛMH ; (2.12)

where Λ is the diagonal matrix with eigenvalues of H̃ and MH is a unitary
matrix whose rows comprise the eigenvectors of H̃. The DFT operation on x[n]
can be represented by matrix multiplication as

X = WNx ; (2.13)

where X = (X[0], X[1], . . . , X[N − 1])T , x = (x[0], x[1], . . . , x[N − 1])T and WN

is the Vandermonde DFT matrix. Moreover,

W−1
N = WH

N . (2.14)

The IDFT can be similarly represented as

x = WH
N X . (2.15)

Let v be the eigenvector of H with eigenvalue λ. Then

λv = Hv ; (2.16)

The unitary matrix MH has rows that are the eigenvectors of H, i.e., λim
T
i =HmT

i

for i = 0, 1, . . . , N − 1, where mi denotes the ith row of MH . Moreover
WN = MH and WH

N = M . Thus, we have [10]

Y = WN y (2.17)

= WN [H̃x + n]

= WN [H̃WH
N X + n]
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= W [MλMHWH
N X + n]

= WMλMHWH
N X + Wn

= MHMλMHMX + WNn

= λX + WNn (2.18)

since WN is unitary, WNn is still white and Gaussian with unchanged average
noise power.

2.5 Reed-Solomon Codes

A Reed-Solomon (RS) code [6] of length N and minimum Hamming distance
dHm is a set of vectors, whose components are the values of a polynomial C(x)
of degree ≤ K − 1 = N − dHm at the positions zj ,with z being an element of
order N from an arbitrary number field, i.e., z ∈ GF(Pm), zN = 1, zj 6= 1 for
0 < j < N .

c = (c0, c1, . . . , cN−1), cj = C(x = zj) . (2.19)

Let us consider the polynomial C(x) to be full degree N−1 then the polynomial
at positions zj can well be formulated using the discrete Fourier transform

cj = C(x = zj) =
N−1∑

k=0

Ckzjk . (2.20)

Theorem Let C(x) be a polynomial of degree K − 1 = N − M − 1 with ar-
bitrary coefficients from a field F. If we compute the values of the polynomial
at N different positions x = xj , xj ∈ F, j = 0, 1, . . . , N − 1. The vectors of N
samples have minimum weight wHm = M + 1 = N −K + 1 [6]. Moreover sum
of two such vectors is equivalent to the sum of the corresponding polynomial
coefficients, the sum of vectors fulfil the degree limitation, too. Thus, it is a
linear code. The minimum distance is equal to the minimum weight.
Theorem: A polynomial C(x) = C0 +C1x+C2x

2 + . . .+CK−1x
K−1 of degree

K − 1 has at most K − 1 different roots xj [6].
Definition A Maximum Distance Separable code fulfils the Singleton bound
(dHm ≤ M + 1 = N −M + 1) with equality [7].
Let us recall some important properties of the discrete Fourier transform espe-
cially the convolution and shift properties. In the Galois field, replacing x by a
power of an element of order N , i.e., x has the property xN = 1. This allows to
compute mod(xN − 1), i.e., xN can be replaced by 1.
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Consider two polynomials a(x) and b(x). The multiplication of a(x) and
b(x) under mod(xN − 1) is

(a0+a1x+. . .+aN−1x
N−1).(b0+b1x+. . .+bN−1x

N−1) = (c0+c1x+. . .+cN−1x
N−1)

(2.21)
c0 = b0a0 + b1aN−1 + b2aN−2 . . . + bN−1a1

c1 = b0a1 + b1a0 + b2aN−1 . . . + bN−1a2 ,

...

cj =
N−1∑

l=0

bl · aj−l mod N . (2.22)

The result obtained is the cyclic convolution of the coefficients of vector a and
b [7], i.e.,

a ? b ≡ a(x) · b(x)mod(xN − 1) . (2.23)

From the cyclic convolution and shift theorem (minimum distance is preserved)
in DFT domain, RS codes can be reformulated as
Definition Reed-Solomon (RS) code [6] of length N and minimum Hamming
distance dHm is a set of vectors, whose components are the values of a polyno-
mial C(x) = xj · C ′

(x) of degree {C ′
(x)} ≤ K − 1 = N − dHm at position zk

with z being and element of order N from an arbitrary number field.

c = (c0, c1, . . . , cN−1), cj = C(x = zj) , (2.24)

where N and K mean the length of the code-word and the number of information
symbols, respectively.

2.5.1 Encoding of RS-codes in DFT domain

Let K be the information, then this information can be put into K = N − 2t
subsequent positions in DFT domain.We write the IDFT as a matrix operation.

c = C.




1 1 1 1 . . .
1 z1 z2 z3

1 z2 z4 z6

1 z3 z6 z9

...
. . .




(2.25)
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Let the information be C = (I0, I1, . . . , IK−1, 0, . . . , 0). This yields the set of
linear equations [6]

c = (I0, I1, . . . , IK−1)




1 1 1 1 . . . 1
1 z1 z2 z3 . . . zN−1

1 z2 z4 z6 . . . z2(N−1)

1 z3 z6 z9
...

...
. . .

...
1 zK−1 z2(K−1) z3(K−1) . . . z(N−1)(K−1)




(2.26)
Since the DFT differs from the IDFT only in the factor of N−1 and the sign
on the exponent of the element of order N , the same matrix description applies
also to Cj=N−1 · c(x = zN−j)
Let us now consider code properties in terms of the minimum Hamming distance
from a matrix viewpoint. The usual matrix perspective would be to consider the
maximum number of linearly independent columns in the parity check matrix.
Since parity-check and generator matrices of an RS code are DFT matrices, the
number of linearly independent columns of the M × N parity-check matrix is
M , leading to a minimum Hamming distance of M + 1. Conversely, one can
also consider the generator matrix in the following small example.




1 1 1 1 1
1 z1 z2 z3 z4

1 z2 z4 z6 z8

1 z3 z6 z9 z12

1 z4 z8 z12 z16




(2.27)

=(00 6= 0︸ ︷︷ ︸
K

| 6= 0 6= 0︸ ︷︷ ︸
M

) which shows that we will only be able to force two position

to zero leaving a weight of 3.
Theorem: Any minor |F | of any size K × K of an N × N Fourier (DFT)
matrix W with components Wk,i = zik, where z = e±j2π/N and adjacent rows
(or columns) is non-zero [6].
Proof: Such a minor is given by

det(F) = |F| =

zk1l zk2l . . . zkK−1l

zk1(l+1) zk2(l+2) . . . zkK−1(l+1)

...
. . .

...
zk1(l+k−1) zk2(l+K−1) . . . zkK−1(l+K−1)

= zk1l+k2l...+kK−1l.

1 1 . . . 1
zk1 zk2 . . . zkK−1

...
. . .

...
zk1(k−1) zk2(K−1) . . . zkK−1(K−1)
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= zk1l+k2l...+kK−1l.
∏

i<l≤(K−1)

(zkl − zki) 6= 0. (2.28)

The last step follows from the well-known determinant of a Vandermonde ma-
trix. Moreover, the non-singularity of the considered submatrices ensures that
at most K − 1 zeros can be achieved, leaving at least N −K + 1 non-zero val-
ues in the time domain, which is then the minimum Hamming weight and the
minimum Hamming distance (linearity).
OFDM makes use of an IFFT and a cyclic prefix (CP) addition at the trans-
mitter and a (CP) elimination and an FFT at the receiver. The CP, which is
used for inter-symbol interference cancellation makes the channel convolution
to appear cyclic and the IFFT/FFT pair diagonolizes the channel. Practically,
usually some consecutive carriers are left unused, thereby realising an analog
RS code.

2.6 MIMO systems, Diagonolization of MIMO
systems by Singular Value Decomposition.

Multiple Input Multiple Output systems use multiple transmitters and multi-
ple receivers for transmission and reception, respectively. Consider a MIMO
system consisting of Mt transmit and Mr receive antennas respectively. Let
h11, h12 . . . , hMrMt be the channel gains from transmit antenna Mt to receive
antenna Mr. Let x1, x2, . . . , xMt, are Mt-dimensional transmit symbols. These
symbols, when transmitted over the channel, are filtered by h11, h12, . . . , hMrMt

the channel impulse responses, and corrupted by noise modelled to occur at the
receiver. If n1, n2, . . . , nMr are the noise samples at the receiver, then in matrix
form the channel output is [10]



y1

y2

...
yMr


 =




h11 h12 . . . h1Mt

h21 h22 . . . h2Mt

...
. . .

...
hMr1 hMr2 . . . hMrMt







x1

x2

...
xMt


 +




n1

n2

...
nMr


 (2.29)

In more compact form we write

y = H x + n. (2.30)

where H is the Mr × Mt channel gain matrix, x and y are Mt and Mr di-
mensional column vectors.The channel gain matrix HMrMt can be decomposed
using Singular Value Decomposition (SVD), in the form

H = UDV H (2.31)

where the Mr ×Mr matrix U and the Mt ×Mt matrix V are unitary matrices
and D is an Mr × Mt diagonal matrix with singular values δi of H. These
singular values δi have the property that δi =

√
λi for λi the ith eigenvalue of
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HHH and RH of these singular values are nonzero, where RH is the rank of
the matrix H, RH ≤ min(Mt,Mr). If H is full rank, then RH = min(Mt,Mr).
The decomposition of the channel is obtained by defining a transformation on
the channel input and output x and y through transmit pre-coding and receiver
post processing. In transmit pre-coding the input to the antennas is generated
through a linear transformation on the input vector x̃ as x = V x̃. Receiver
post processing performs a similar operation at the receiver by multiplying the
channel output y with UH . The parallel decomposition of MIMO system using
SVD is given as [10]

ỹ = UH(Hx + n) (2.32)

= UH(UDV Hx + n)

= UH(UDV HV x̃ + n)

= UHUDV HV x̃ + UHn

= UHUDV HV x̃ + UHn

= Dx̃ + ñ (2.33)

where ñ = UHn .

2.7 The Smith Normal Form

For an m × n matrix A with entries from Principle Ideal Domain(PID), there
exist unimodular matrices Um×m and Vn×n such that UAV is a diagonal matrix,
with positive diagonal elements δ1, δ2, δ3, . . . , δr where δ1|δ2| . . . |δr [2]. Moreover
δ1, δ2, δ3, . . . , δr are the invariant factors of the matrix A.
We can write B = UAV
where U and V are unimodular matrices with +1 and −1 determinant.
Example:

A =




2 3 4
−6 6 12
10 −4 −16




The Smith Normal Form is

B =




2 0 0
0 6 0
0 0 12




and the unimodular matrices U and V are

U =




1 0 0
2 −1 −1
−3 4 3




and

V =




1 −2 −2
0 1 −2
0 0 −1



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The unimodular matrices, U and V are permutation matrices obtained as a
result of elementary row and column operations on matrix A. Matrix U is
the pre-multiplication matrix obtained from the row operations on an identity
matrix, as a result of diagonolization of the matrix A, whereas matrix V is
the post-multiplication matrix obtained as a result of column operations. The
Smith Normal Form is treated in detail in chapter 3
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Chapter 3

Detailed treatment of the
possibilities to use Smith’s
Normal Form for coding

3.1 Introduction

Let us consider two rectangular matrices A and B of same size m× n over the
Principal Ideal Domain (PID). B is said to be equivalent to A, if there exist
invertible unimodular matrices U and V such that B = UAV . B is a m×n di-
agonal matrix with δ1, δ2, δ3, . . . , δr on its leading diagonal (0 ≤ r ≤ min(m,n))
and zero elsewhere, and δ1|δ2| . . . |δr. Moreover δ1, δ2, . . . , δr are the diagonal
elements, and are also known as invariant factors of A over Principle Ideal Do-
main (PID). This process is often also referred to as Invariant Factor theorem.
Theorem For an m × n matrix A with entries from PID, there exist uni-
modular matrices Um×m and Vn×n such that UAV is a diagonal matrix with
positive diagonal elements δ1, δ2, δ3, . . . , δr, where δ1|δ2| . . . |δr [2]. Moreover,
δ1, δ2, δ3, . . . , δr are the invariant factors of the matrix A.
We can write

B = UAV (3.1)

where U and V are unimodular matrices with +1 and −1 determinant. As the
absolute value of |U | and |V | is 1, we can thus write as

|UAV | = |B| = δ1 · δ2 · δ3 · . . . · δr . (3.2)

Example:

A =




2 4 4
−6 6 12
10 −4 −16




14



The Smith Normal Form is

B =




2 0 0
0 6 0
0 0 12




and the unimodular matrices U and V are

U =




1 0 0
2 −1 −1
−3 4 3




and

V =




1 −2 −2
0 1 −2
0 0 −1


 .

It is also noteworthy to describe the two important terms, the determinantal
divisor and the Elementary divisor of matrix A

Determinantal divisor

Consider an m× n rectangular matrix A from PID. Let k be any integer such
that (0 ≤ k ≤ n). Now choose k row and k column subscripts. Compute the
determinant of the sub-matrices constructed from the k choices. Finally, find
the greatest common divisor of all the determinants. This number is known
as kth determinantal divisor and is denoted by dk(A). From the determinantal
divisor, two matrices are said to be equivalent if and only if they have the same
determinantal divisors [3]. Moreover, if the rank of A is r, then only r elements
on the diagonal will be different from zeros.
The relationship between the determinantal divisor and the invariant factors is
given by

dk(A) = δ1(A) · δ2(A) · δ3(A) . . . δk(A) , (1 ≤ k ≤ n) . (3.3)

Or
δk(A) = dk(A)/dk − 1(A) , (1 ≤ k ≤ n) . (3.4)

Elementary Divisor

The theory about elementary divisor arises from primes. For integer numbers
Z, every number can be written as a product of prime numbers. Thus any of
the invariant factors on the diagonal can be expressed as the product of distinct
primes power. The set of such prime powers for all invariant factors is then
another invariant factor. Any such prime power is called as elementary Divisor.
Thus in terms of elementary Divisor, two matrices are said to be equivalent if
and only if they have they same elementary Divisors [3].
Determinantal and elementary divisors are used to check either two matrices are
equivalent to each other or not. Thus, two matrices are said to be equivalent if
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they have the same determinantal divisors / elementary divisors. This project
is carried out to check the Smith Normal Form for code construction, the main
concern is the unimodular matrices. These two terms explains a property of the
diagonal matrix, which is beyond the scope of this project and are skipped for
further discussion.

3.2 Algorithm

In the computation of the Smith Normal Form, first of all the invertible matrices
U and V are to be computed such that UAV will be diagonal. Once invertible
matrices U and V are obtained, it is then easy to put the matrix into Smith
Normal Form. The unimodular matrices U and V are permutation matrices
obtained by elementary row (column) operations on the matrix A. Any row
operation made in matrix A is reflected on the left by U, the pre-multiplying
matrix, and any column operation in matrix A is reflected on the right by V, the
post multiplying matrix [4]. Thus, U and V matrices are obtained by repeatedly
applying transformations that replace a row (column) by another row (column)
or a linear combination of rows (columns)
Elementary row operations are

1. to interchange row j and row k,

2. to multiply row j by q (integer),

3. to add q times row k to row j.

The elementary column operations are

4. to interchange column j and column k,

5. to multiply column j by q (integer),

6. to add q times column k to column j.

In order to keep track of the transformations, row operations are performed
on an identity matrix to represent the pre-multiplication matrix U and corre-
sponding column operations on another identity matrix to represent the post
multiplication matrix V.
In order to find out the Smith Normal Form of a matrix, the first stage is to
produce a diagonolization of the matrix in the following steps (algorithm from
[2])

1. Step 1: Check for the element with the smallest absolute value. Inter-
change rows and column such that a11 is the element of smallest absolute
value among all non-zero elements in the first row and the first column of
the matrix.
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2. Step 2: If a11 divides a1j (a11 | a1j), for j = 2, 3, . . . , n, go to step 3,
otherwise for some k, let a1k = qa11 + r where q, r are integers and
0 < r < a11. Let A[1, k] denote the kth column of A. Replace A[1, k] by
A[1, k] - qA[1, 1]. Go to step 1.

3. Step 3: If a11 divides al1 (a11 | al1), for l = 2, 3, . . . , n, go to step 4,
otherwise for some k, let ak1 = qa11 + r where q, r are integers and
0 < r < a11. Let A[k, 1] denote the kth row of A. Replace A[k, 1] by
A[k, 1]− qA[1, 1]. Go to step 1.

4. Step 4: a11 | a1j for j = 2, 3, . . . , n, and a11 | a1l for l = 2, 3, . . . , n.
Either assume a1j = qa11 , then replace A[1, j] by A[1, j] − qA[1, 1] for
j = 2, 3, . . . , n. This will ensure that the first row of the matrix has only
the first element non-zero.
Assume al1 = qa11 , then replace A[l, 1] by A[l, 1] − qA[l, 1] for l =
2, 3, . . . , n. This will ensure that the first column of the matrix has only
the first element non-zero.

5. Step 5: The matrix is now of the form



a11 0 . . . 0
0 a22 . . . a2n

...
...

. . .
...

0 an2 . . . ann




Step 1 to 4 are now applied to the sub-matrix



a22 . . . a2n

...
. . .

...
an2 . . . ann




and the process continues until the matrix is completely diagonolized.
It is also necessary to memorize that if the numbers are getting larger,
then step 1 and/or 4 can be omitted as follows. If in a row or column two
or more elements has the same absolute value, then the one which will
keep numbers down the most will be selected.
The diagonal matrix so obtained is




x1 0 . . . 0 0
0 x2 . . . 0 0
...

...
. . .

...
0 . . . . . . xr 0
0 . . . . . . 0 0




6. Step 6: The aim of Steps 1 − 5 was to diagonolize a matrix. Once the
diagonolization of a matrix is obtained, the next step is to find out the

17



invariant factors of the diagonal matrix. If x1|xk for k = 2, 3, . . . , n, then
check x2|xk for k = 3, 4, . . . , n, continue this process until xl - xk for
0 < l < k. Row k is added to row l and the process is repeated for a new
xl of smaller value.

Example: Let the diagonal matrix obtained be



3 0 0
0 8 0
0 0 12




The invariant factors for this matrix can be found in the following steps.
Since 3 is not a factor of 8 thus according to Step 6, row 2 (R2) is added to row
1 (R1)

R1 + R2 ⇒



3 8 0
0 8 0
0 0 12


 ,

using Step 2, multiply column 1 (C1) by 2 and subtract from column 2 (C2),
i.e.,

C2 − 2C1 ⇒



3 2 0
0 8 0
0 0 12


 ,

According to Step 1, to check for an element of smaller absolute value in the
first row and the first column, interchange (C2) and (C1) (column operation),
i.e.,

C1 ∼ C2 ⇒



2 3 0
8 0 0
0 0 12


 ,

using Step 2, since 2 is not a factor of 3, thus subtraction of column 1 (C1) from
column 2 (C2) leads to,

C2 − 2C1 ⇒



2 1 0
8 −8 0
0 0 12


 .

According to Step 1, again to check for an element of smaller absolute value in
the first row and the first column, interchange C1 and C2 (column operation),

C1 ∼ C2 ⇒



1 2 0
−8 8 0
0 0 12


 .

Now according to Step 2, all the elements except a11 in the first row must be
zero. Thus, subtracting 2 times C1 from C2, i.e.,

C2 − 2C1 ⇒



1 0 0
−8 36 0
0 0 12


 .
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Similarly Step 3 implies that all elements in the first column except a11 must
be zero, thus adding 8 times R1 to R2 results in

R2 + 8R1 ⇒



1 0 0
0 36 0
0 0 12


 .

Now, since 1 is a factor of both 36 and 12, thus it remains unchanged. In the
matrix above a22 > a33 , thus according to Step 6 R3 is added to R2, i.e.,

R2 + R3 ⇒



1 0 0
0 36 12
0 0 12


 .

Following Step 1, to check for an element of smaller absolute value in the sec-
ond row and the second column interchange column 3 and column 2 (column
operation)

C2 ∼ C3 ⇒



1 0 0
0 12 36
0 12 0




According to Step 2 and Step 3, the second row and second column must have
only 2nd element non-zero. Thus subtracting 3 times columns 2 from column 3
and row 2 from row 3 leads to

C3 − 3C2 ⇒



1 0 0
0 12 0
0 12 −36


 ,

R3 −R2 ⇒



1 0 0
0 12 0
0 0 −36


 .

Multiplying column 3 by (-1)

(−1)C2 ⇒



1 0 0
0 12 0
0 0 36




The invariant factors are [1,12,36].

3.3 The Smith Normal Form of Integer Matrices

The Smith Normal Form of the integer matrices can well be explained from the
solution of the following matrix. Example [4]:

A =




7 8 9
4 5 6
1 2 3



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According to Step 1, a11 must be the element of smallest absolute value. Thus
interchanging row 1 (R1) with row 3 (R− 3) (row operation). Moreover to keep
the track of transformations, performing the same operation on an identity
matrix and pre-multiply.

R1 ∼ R3 ⇒



0 0 1
0 1 0
1 0 0







1 2 3
4 5 6
7 8 9







1 0 0
0 1 0
0 0 1


 . (3.5)

Since 1 is a factor of all the elements in the first row and column, thus according
to Step 4, subtracting 2 times column 1 (C1) from column 2 (C2), and 3 times
column 1 (C1) from column 3 (C3) and performing the same operations on
post-multiplication identity matrix results in,

C2 − 2C1

C3 − 3C1
⇒




0 0 1
0 1 0
1 0 0







1 0 0
4 −3 −6
7 −6 −12







1 −2 −3
0 1 0
0 0 1


 . (3.6)

Similarly following Step 4, subtracting 4 times row 1 (R1) from row 2 (R2)
and 7 times row 1 (R1) from row 3 (R3). Perform the same operations on the
pre-multiplication matrix.

R2 − 4R1

R3 − 7R1
⇒




0 0 1
0 1 −4
1 0 −7







1 0 0
0 −3 −6
0 −6 −12







1 −2 −3
0 1 0
0 0 1


 . (3.7)

As obvious from the matrix, 3 has the minimum absolute value and is also a
factor of all the elements of the sub matrix, thus using Step 4 again, subtracting
2 times C2 from C3 implies,

C3 − 2C2 ⇒



0 0 1
0 1 −4
1 0 −7







1 0 0
0 −3 0
0 −6 0







1 −2 1
0 1 −2
0 0 1


 . (3.8)

Now to make all the elements of column 2, except a22, equal to zero (Step 4),
subtracting 2 times R2 from R3,

R3 − 2R2 ⇒



0 0 1
0 1 −4
1 −2 1







1 0 0
0 −3 0
0 0 0







1 −2 1
0 1 −2
0 0 1


 . (3.9)

The invariant factors theorem states that all the diagonal elements must be
positive, thus multiplying C2 by −1,

(−1)C2 ⇒



0 0 1
0 1 −4
1 −2 1







1 0 0
0 3 0
0 0 0







1 2 1
0 −1 −2
0 0 1


 . (3.10)
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The resultant diagonal matrix is

B =




1 0 0
0 3 0
0 0 0


 ,

where the unimodular matrices U and V are

U =




0 0 1
0 1 −4
1 −2 1


 and V =




1 2 1
0 −1 −2
0 0 1




Moreover
|U | = 1 · (0 · (−2)) + 1 · 1 = 0 + 1 = 1 and
|V | = 1 · ((−1) · 1 + 0 · (−2)) = −1 + 0 = −1
since the matrices U and V are non-singular, they are thus invertible.

3.3.1 Smith Normal Form of a bigger rectangular matrix

Consider a 5 x 7 matrix [3] as shown,

G =




1 2 3 4 5 6 7
1 0 1 0 1 0 1
2 4 5 6 1 1 1
1 4 2 5 2 0 0
0 0 1 1 2 2 3




.

The resultant diagonal and unimodular matrices are

D =




1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 2 0 0




U =




1 0 0 0 0
2 0 −1 0 0
2 0 −1 0 −1
5 0 −2 −1 −3
−3 −1 2 0 0




,

and

V =




1 −3 2 −6 −14 29 16
0 0 0 7 15 −34 −18
0 1 −2 5 10 −23 −13
0 0 1 −7 −14 33 18
0 0 0 1 2 −6 −4
0 0 0 0 0 1 0
0 0 0 0 0 0 1




.
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The number of invariant factors in the matrix D on the diagonal are five, thus
it means that the rank of the matrix G is 5, i.e., r = 5, which also proves that
the number of invariant factors equals the rank of a matrix.

3.4 Code construction with Smith Normal Form

The diagonolization of integer matrices with Smith Normal From is discussed
in the previous sections. The question is now, is it possible to use the Smith
Normal Form as a basis for discrete code construction? In order to check Smith
Normal From as a possibility for code construction using the unimodular ma-
trices, let us first work out the minimum Hamming distance /Hamming weight
for the unimodular matrices from the matrix view point. The unimodular ma-
trices are sparse permutation matrices which are obtained as a result of various
permutations and linear combinations on integer matrix. Consider the 7 × 7
unimodular matrix obtained in 3.37. Let this matrix represent the generator
matrix for the code (supposed), if we force the last four positions to zero, i.e.,

(C0C1C2|0000) =




1 −3 2 −6 −14 29 16
0 0 0 7 15 −34 −18
0 1 −2 5 10 −23 −13
0 0 1 −7 −14 33 18
0 0 0 1 2 −6 −4
0 0 0 0 0 1 0
0 0 0 0 0 0 1




. (3.11)

there is still a possibility to get a zero minor, which is violation to the minimum
Hamming distance. Moreover, let us suppose that the rows of the matrix rep-
resent the code-words of a code (supposed), then Hamming weight of the last
two rows is 1, which means a Hamming distance of 1, which also contradicts the
definition of minimum Hamming distance for a code-word. Thus the unimodu-
lar matrices so obtained does not fulfils the singleton bound (dHm ≤ M + 1 =
N −M + 1) so, it is concluded that the Smith Normal Form cannot be used for
code construction.
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3.5 Conclusion

Any m × n rectangular integer matrix can be diagonolized by pre and post-
multiplication with unimodular matrices. The pre and post-multiplication ma-
trices are obtained from the elementary row and column operations on identity
matrices used to keep track of operations performed for diagonolization of the
integer matrix. The resulting pre and post-multiplication matrices are sparse
matrices, which are obtained as a result of various permutations and linear
combinations on the integer matrix. In order to make use of the Smith Nor-
mal Form for code construction, certain minimum Hamming distance has to be
guaranteed. Due to the sparsity of the resulting pre and post-processing matri-
ces, minors will often be zero, thereby violating the desired minimum Hamming
distance. Hence it is concluded that Smith Normal Form cannot be used for
discrete code construction.
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